Locally linear representation for image clustering
نویسندگان
چکیده
منابع مشابه
Locally linear representation for subspace learning and clustering
It is a key to construct a similarity graph in graph-oriented subspace learning and clustering. In a similarity graph, each vertex denotes a data point and the edge weight represents the similarity between two points. There are two popular schemes to construct a similarity graph, i.e., pairwise distance based scheme and linear representation based scheme. Most existing works have only involved ...
متن کاملLocally Linear Embedding Clustering Algorithm for Natural Imagery
The ability to characterize the color content of natural imagery is an important application of image processing. The pixel by pixel coloring of images may be viewed naturally as points in color space, and the inherent structure and distribution of these points affords a quantization, through clustering, of the color information in the image. In this paper, we present a novel topologically driv...
متن کاملHyperspectral Image Processing Using Locally Linear Embedding
We describe a method of processing hyperspectral images of natural scenes that uses a combination of kmeans clustering and locally linear embedding (LLE). The primary goal is to assist anomaly detection by preserving spectral uniqueness among the pixels. In order to reduce redundancy among the pixels, adjacent pixels which are spectrally similar are grouped using the k-means clustering algorith...
متن کاملLocally Linear Denoising on Image Manifolds
We study the problem of image denoising where images are assumed to be samples from low dimensional (sub)manifolds. We propose the algorithm of locally linear denoising. The algorithm approximates manifolds with locally linear patches by constructing nearest neighbor graphs. Each image is then locally denoised within its neighborhoods. A global optimal denoising result is then identified by ali...
متن کاملMultiview Locally Linear Embedding for Effective Medical Image Retrieval
Content-based medical image retrieval continues to gain attention for its potential to assist radiological image interpretation and decision making. Many approaches have been proposed to improve the performance of medical image retrieval system, among which visual features such as SIFT, LBP, and intensity histogram play a critical role. Typically, these features are concatenated into a long vec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics Letters
سال: 2014
ISSN: 0013-5194,1350-911X
DOI: 10.1049/el.2014.0666